

Course Title:

Power Electronics Control Design with Simulink and Simscape

Course Purpose:

This one-day course focuses on modeling and controlling power electronic systems in the Simulink® environment using Simscape Electrical™. Topics include:

- Modeling direct current (dc) power electronic components
- Controlling the level of fidelity in a model
- Developing controls for power electronics
- Modeling three-phase alternating current (ac) power electronic components
- Controlling power electronics for motor drive applications

Pre- requisites:

MATLAB Fundamentals, Simulink for System and Algorithm Modeling, and Modeling Physical Systems with Simscape

- √ 1 training day
- / Hours: 09:00-17:00
- ✓ Total training hours: 8

Teaching method

The course combines lectures, demonstrations and practical exercises in MATLAB, using original training books from MathWorks. The course is in Hebrew but the training materials are in English.

Course Objective:

DC Power Electronic Systems

Objective: Learn to model and analyze direct current (dc) power electronic systems.

- Modeling a boost converter
- Measuring physical quantities
- Visualizing results
- Selecting a solver

עמוד מס' 1

Training Center Systematics - Contact information:

Phone number: 03-7660111 Ext: 6 Email: training@systematics.co.il

Website: http://www.systematics.co.il/mathworks

Converter Model Fidelity

Objective: Learn to build power electronic models using the most appropriate level of fidelity.

- Selecting appropriate converter model fidelity
- Using prebuilt components
- Logging and comparing signals
- Measuring efficiency and losses

Linearization and Control

Objective: Learn to linearize power electronic switching models and tune closed-loop control systems.

- Implementing closed-loop voltage control
- Linearizing power electronic converters
- Tuning the controller

Three-Phase Power Electronic Systems

Objective: Learn to model and analyze three-phase ac power electronic systems.

- Modeling a three-phase inverter
- Measuring three-phase physical quantities
- Characterizing harmonics and distortion

Motor Control

Objective: Learn to model and control electric motors using power electronics.

- Modeling a PMSM motor
- Implementing motor control
- Verifying the motor design
- Integrating into a system-level model

עמוד מס' 2

Training Center Systematics - Contact information:

Phone number: 03-7660111 Ext: 6 Email: training@systematics.co.il

Website: http://www.systematics.co.il/mathworks